On the Determination of the Aerodynamic Damping of Wind Turbines Using the Forced Oscillations Method in Wind Tunnel Experiments

Author:

Fontecha Robert,Kemper Frank,Feldmann Markus

Abstract

The development of wind turbine technology has led to higher and larger wind turbines with a higher sensitivity to dynamic effects. One of these effects is the aerodynamic damping, which introduces favorable damping forces in oscillating wind turbines. These forces play an important role in the turbine lifetime, but have not yet been studied systematically in detail. Consequently, this paper studies the plausibility of determining the aerodynamic damping of wind turbines systematically through wind tunnel experiments using the forced oscillation method. To this end, a 1:150 scale model of a prototype wind turbine has been fabricated considering Reynolds number effects on the blades through XFOIL calculations and wind tunnel measurements of airfoil 2D-section models. The resulting tower and wind turbine models have been tested for different operation states. The tower results are approximate and show low aerodynamic damping forces that can be neglected on the safe side. The measured aerodynamic damping forces of the operating turbine are compared to existing analytic approaches and to OpenFAST simulations. The measured values, although generally larger, show good agreement with the calculated ones. It is concluded that wind tunnel forced oscillations experiments could lead to a better characterization of the aerodynamic damping of wind turbines.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference49 articles.

1. Wind in Power: 2016 European Statistics,2016

2. Windkraftanlagen: Grundlagen, Entwurf, Planung Und Betrieb;Gasch,2016

3. Damping estimation of an offshore wind turbine on a monopile foundation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3