Author:
Soleimani Zohr Shiri Mohammad,Henderson William,Mucalo Michael R.
Abstract
This review focuses on the recent advances in the lesser-studied microemulsion synthesis methodologies of the following noble metal colloid systems (i.e., Os, Re, Ir, and Rh) using either a normal or reverse micelle templating system. The aim is to demonstrate the utility and potential of using this microemulsion-based approach to synthesize these noble metal nanoparticle systems. Firstly, some fundamentals and important factors of the microemulsion synthesis methodology are introduced. Afterward, a review of the investigations on the microemulsion syntheses of Os, Re, Ir, and Rh nanoparticle (NP) systems (in all forms, viz., metallic, oxide, mixed-metal, and discrete molecular complexes) is presented for work published in the last ten years. The chosen noble metals are traditionally very reactive in nanosized dimensions and have a strong tendency to aggregate when prepared via other methods. Also, the particle size and particle size distribution of these colloids can have a significant impact on their catalytic performance. It is shown that the microemulsion approach has the capability to better stabilize these metal colloids and can control the size of the synthesized NPs. This generally leads to smaller particles and higher catalytic activity when they are tested in applications.
Subject
General Materials Science
Reference110 articles.
1. The bakerian lecture-experimental relations of gold (and other metals) to light;Faraday;Philos. Trans. R. Soc. Lond.,1857
2. Gold
3. Nanoalloys: tuning properties and characteristics through size and composition
4. Clusters and Colloids: from Theory to Applications;Schmid,1994
5. Colloidal Dispersions: Suspensions, Emulsions, and Foams;Morrison,2002
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献