Oil Spill Detection Using LBP Feature and K-Means Clustering in Shipborne Radar Image

Author:

Xu JinORCID,Pan Xinxiang,Jia Baozhu,Wu XueruiORCID,Liu Peng,Li Bo

Abstract

Oil spill accidents have seriously harmed the marine environment. Effective oil spill monitoring can provide strong scientific and technological support for emergency response of law enforcement departments. Shipborne radar can be used to monitor oil spills immediately after the accident. In this paper, the original shipborne radar image collected by the teaching-practice ship Yukun of Dalian Maritime University during the oil spill accident of Dalian on 16 July 2010 was taken as the research data, and an oil spill detection method was proposed by using LBP texture feature and K-means algorithm. First, Laplacian operator, Otsu algorithm, and mean filter were used to suppress the co-frequency interference noises and high brightness pixels. Then the gray intensity correction matrix was used to reduce image nonuniformity. Next, using LBP texture feature and K-means clustering algorithm, the effective oil spill regions were extracted. Finally, the adaptive threshold was applied to identify the oil films. This method can automatically detect oil spills in shipborne radar image. It can provide a guarantee for real-time monitoring of oil spill accidents.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Characteristics of Submesoscale Eddies near the Coastal Regions of Eastern Japan: Insights from Sentinel-1 Imagery;Journal of Marine Science and Engineering;2024-04-30

2. Parameter tuning of unsupervised algorithms to identify oil spills on the sea surface;Eighth Geoinformation Science Symposium 2023: Geoinformation Science for Sustainable Planet;2024-01-29

3. A novel feature enhancement and semantic segmentation scheme for identifying low-contrast ocean oil spills;Marine Pollution Bulletin;2024-01

4. Oil Slick Identification in Marine Radar Image Using HOG, Random Forest, and PSO;IEEE Geoscience and Remote Sensing Letters;2024

5. Detection of Oil Spill Events at Sea Using Machine Learning;2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA);2023-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3