Abstract
Oil spill accidents have seriously harmed the marine environment. Effective oil spill monitoring can provide strong scientific and technological support for emergency response of law enforcement departments. Shipborne radar can be used to monitor oil spills immediately after the accident. In this paper, the original shipborne radar image collected by the teaching-practice ship Yukun of Dalian Maritime University during the oil spill accident of Dalian on 16 July 2010 was taken as the research data, and an oil spill detection method was proposed by using LBP texture feature and K-means algorithm. First, Laplacian operator, Otsu algorithm, and mean filter were used to suppress the co-frequency interference noises and high brightness pixels. Then the gray intensity correction matrix was used to reduce image nonuniformity. Next, using LBP texture feature and K-means clustering algorithm, the effective oil spill regions were extracted. Finally, the adaptive threshold was applied to identify the oil films. This method can automatically detect oil spills in shipborne radar image. It can provide a guarantee for real-time monitoring of oil spill accidents.
Funder
National Natural Science Foundation of China
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献