Evolution Process of Liquefied Natural Gas from Stratification to Rollover in Tanks of Coastal Engineering with the Influence of Baffle Structure

Author:

Wang ZheORCID,Han Fenghui,Liu Yuxiang,Li Wenhua

Abstract

During the storage process, liquefied natural gas (LNG) may undergo severe evaporation, stratification, and rollover in large storage tanks due to heat leakage, aging, or charging, causing major safety risks. Therefore, this article theoretically analyzes the causes and inducing factors of the LNG stratification and rollover phenomenon in the storage tank of coastal engineering. The computational fluid dynamics was used to establish a numerical model for the heat and mass transfer of LNG multicomponent materials in the imaginary layered interface of the storage tank, and the evolution process of LNG from spontaneous stratification to rollover was simulated. The accuracy of the mathematical model is verified by comparing numerical results with experimental data from open literature. The effects of the density difference between upper and lower layers, layering parameters, heat leakage parameters, and the baffles structure on the rollover process were studied. The effects of the interfacial surface variations are not included in this study. The results show that different baffle structures will form different boundary velocity fields, which will only affect the severity of the rollover, not the occurrence time. The larger the layering density difference, the earlier the rollover occurs. Under current conditions, the baffle structure that has the best suppression of rollover and the minimum boundary velocity is at 0.5 m above the stratified interface with the installation of the baffle at 5 degrees.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Liaoning Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3