Kinematics of the Ship’s Wake in the Presence of a Shear Flow

Author:

Shugan Igor,Chen Yang-Yih

Abstract

We present the kinematic model of the ship wake in the presence of horizontal subsurface current linearly varying with the depth of water. An extension of the Whitham–Lighthill theory for calm water is developed. It has been established that the structure of ship waves under the action of a shear flow can radically differ from the classical Kelvin ship wake model. Co propagating ship and shear current lead to increasing the total wedge angle up to full one 180° and decreases for the counter shear current. At relatively large unidirectional values of the shear current, cusp waves in the vicinity of the wedge boundary are represented by transverse waves and, conversely, by diverging waves directed almost perpendicular to the ship track for the opposite shear current. The presence of a shear flow crossing the direction of the ship’s movement gives a strong asymmetry of the wake. An increase in the perpendicular shear flow leads to an increase in the difference between the angles of the wake arms. The limiting value of the shear current corresponds to one or both arms angles equal to 90°. Transverse and divergent edge waves for this limiting case coincide.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wave Dynamics of Stratified Media with Variable Shear Flows;Fluid Dynamics;2023-12

2. Analytic Properties of Solutions to the Equation of Internal Gravity Waves with Flows for Critical Modes of Wave Generation;Proceedings of the Steklov Institute of Mathematics;2023-09

3. Modern Methods of Mechanics;Trudy Matematicheskogo Instituta imeni V.A. Steklova;2023-09

4. Motion Attribute-based Clustering and Collision Avoidance of Multiple In-water Obstacles by Autonomous Surface Vehicle;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23

5. Ship’s Wake on a Finite Water Depth in the Presence of a Shear Flow;Journal of Marine Science and Engineering;2022-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3