Study on the Influence of Temperature on the Temporal and Spatial Distribution Characteristics of Natural Cavitating Flow around a Vehicle

Author:

Sun Tiezhi,Zhang Jianyu,Zhang Xiaoshi,Jiang Yichen

Abstract

Cavitation involves complex multiphase turbulence and has important research significance. In this study, the Schnerr–Sauer cavitation model was used to model cavitation, and the detached-eddy simulation (DES) method was used to calculate the unsteady natural cavitating flow. The predicted results are in good agreement with experimentally measured cavity evolution and pressure values, demonstrating the effectiveness of this numerical method. Low temperature causes changes in the properties of water. The density of water at 0° is 999.84 kg/m3 and the density of water at 25° is 997.04. Cavitation evolution and shedding are analyzed at temperatures of 0 °C and 25 °C. The results showed that lower temperature increased the frequency of cavitation and enhanced pressure pulsation. At the same time, low temperature also increases the frequency of cavity shedding and shortens the cycle. In addition, based on the Ω method, the difference between vortex dynamics at various temperatures was studied, and it was found that different cavity stages showed different vortex structure characteristics, and lower temperature would aggravate the change of wake vortex structure. At the same time, the analysis of the turbulence characteristics in the downstream of the cavity shows that the lower temperature reduces the velocity pulsation and reduces the turbulence integral scale. At the end of the model, large-scale pulsations are transformed into small-scale pulsations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3