Large-Scale Laboratory Experiments on Mussel Dropper Lines in Ocean Surface Waves

Author:

Gieschen RebekkaORCID,Schwartpaul Christian,Landmann Jannis,Fröhling Lukas,Hildebrandt ArndtORCID,Goseberg NilsORCID

Abstract

The rapid growth of marine aquaculture around the world accentuates issues of sustainability and environmental impacts of large-scale farming systems. One potential mitigation strategy is to relocate to more energetic offshore locations. However, research regarding the forces which waves and currents impose on aquaculture structures in such conditions is still scarce. The present study aimed at extending the knowledge related to live blue mussels (Mytilus edulis), cultivated on dropper lines, by unique, large-scale laboratory experiments in the Large Wave Flume of the Coastal Research Center in Hannover, Germany. Nine-months-old live dropper lines and a surrogate of 2.0 m length each are exposed to regular waves with wave heights between 0.2 and 1.0 m and periods between 1.5 and 8.0 s. Force time histories are recorded to investigate the inertia and drag characteristics of live mussel and surrogate dropper lines. The surrogate dropper line was developed from 3D scans of blue mussel dropper lines, using the surface descriptor Abbott–Firestone Curve as quality parameter. Pull-off tests of individual mussels are conducted that reveal maximum attachment strength ranges of 0.48 to 10.55 N for mussels that had medium 3.04 cm length, 1.60 cm height and 1.25 cm width. Mean drag coefficients of CD = 3.9 were found for live blue mussel lines and CD = 3.4 for the surrogate model, for conditions of Keulegan–Carpenter number (KC) 10 to 380, using regular wave tests.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference82 articles.

1. World Population Prospects 2019: Highlights,2019

2. The 2030 Agenda for Sustainable Development,2015

3. Aquaculture Perspectives of Multi-Use Sites in the Open Ocean;Buck,2017

4. Aquaculture Perspective of Multi-Use Sites in the Open Ocean;Goseberg,2017

5. Scientific Opinion on health benefits of seafood (fish and shellfish) consumption in relation to health risks associated with exposure to methylmercury

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3