Abstract
The rapid growth of marine aquaculture around the world accentuates issues of sustainability and environmental impacts of large-scale farming systems. One potential mitigation strategy is to relocate to more energetic offshore locations. However, research regarding the forces which waves and currents impose on aquaculture structures in such conditions is still scarce. The present study aimed at extending the knowledge related to live blue mussels (Mytilus edulis), cultivated on dropper lines, by unique, large-scale laboratory experiments in the Large Wave Flume of the Coastal Research Center in Hannover, Germany. Nine-months-old live dropper lines and a surrogate of 2.0 m length each are exposed to regular waves with wave heights between 0.2 and 1.0 m and periods between 1.5 and 8.0 s. Force time histories are recorded to investigate the inertia and drag characteristics of live mussel and surrogate dropper lines. The surrogate dropper line was developed from 3D scans of blue mussel dropper lines, using the surface descriptor Abbott–Firestone Curve as quality parameter. Pull-off tests of individual mussels are conducted that reveal maximum attachment strength ranges of 0.48 to 10.55 N for mussels that had medium 3.04 cm length, 1.60 cm height and 1.25 cm width. Mean drag coefficients of CD = 3.9 were found for live blue mussel lines and CD = 3.4 for the surrogate model, for conditions of Keulegan–Carpenter number (KC) 10 to 380, using regular wave tests.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference82 articles.
1. World Population Prospects 2019: Highlights,2019
2. The 2030 Agenda for Sustainable Development,2015
3. Aquaculture Perspectives of Multi-Use Sites in the Open Ocean;Buck,2017
4. Aquaculture Perspective of Multi-Use Sites in the Open Ocean;Goseberg,2017
5. Scientific Opinion on health benefits of seafood (fish and shellfish) consumption in relation to health risks associated with exposure to methylmercury
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献