Switched Reluctance Motors and Drive Systems for Electric Vehicle Powertrains: State of the Art Analysis and Future Trends

Author:

Lan YuanfengORCID,Benomar YassineORCID,Deepak Kritika,Aksoz AhmetORCID,Baghdadi Mohamed ElORCID,Bostanci Emine,Hegazy OmarORCID

Abstract

This paper presents a detailed literature review on switched reluctance motor (SRM) and drive systems in electric vehicle (EV) powertrains. SRMs have received increasing attention for EV applications owing to their reliable structure, fault tolerance ability and magnet free design. The main drawbacks of the SRM are torque ripple, low power density, low power factor and small extended speed range. Recent research shows that multi-stack conventional switched reluctance motors (MSCSRM) and multi-stack switched reluctance motors with a segmental rotor (MSSRM-SR) are promising alternative solutions to reduce torque ripples, increase torque density and increase power factor. Different winding configurations such as single-layer concentrated winding (SLC), single layer mutually coupled winding (SLMC), double layer concentrated winding (DLC), double layer mutually coupled winding (DLMC) and fully-pitched winding (FP) are introduced in the literature in recent years to increase average torque and to decrease torque ripples. This research analyzes winding methods and structure of the SRMs, including conventional and segmental rotors. They have been compared and assessed in detail evaluation of torque ripple reduction, torque/power density increase, noise/vibration characteristics and mechanical structure. In addition, various drive systems are fully addressed for the SRMs, including conventional drives, soft-switching drives, drives with standard inverters and drives with an integrated battery charger. In this paper, the SRM control methods are also reviewed and classified. These control methods include strategies of torque ripple reduction, fault-diagnosis, fault-tolerance techniques and sensorless control. The key contributions of this paper provide a useful basis for detailed analysis of modeling and electromechanical design, drive systems, and control techniques of the SRMs for EV applications.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3