Investigation of Thermal-Flow Characteristics of Pipes with Helical Micro-Fins of Variable Height

Author:

Jasiński Piotr Bogusław,Kowalczyk Michał JanORCID,Romaniak Artur,Warwas BartoszORCID,Obidowski DamianORCID,Gutkowski ArturORCID

Abstract

The results of numerical investigations of heat transfer and pressure drops in a channel with 30° helical micro-fins are presented. The main aim of the analysis is to examine the influence of the height of the micro-fins on the heat-flow characteristics of the channel. For the tested pipe with a diameter of 12 mm, the micro-fin height varies within the range of 0.05–0.40 mm (with 0.05 mm steps), which is equal to 0.4–3.3% of its diameter. The analysis was performed for a turbulent flow, within the range of Reynolds numbers 10,000–100,000. The working fluid is water with an average temperature of 298 K. For each tested geometry, the characteristics of the friction factor f(Re) and the Nusselt number Nu(Re) are shown in the graphs. The highest values of Nusselt numbers and friction factors were obtained for pipes with the micro-fins H = 0.30 mm and H = 0.35 mm. A large discrepancy is observed in the friction factors f(Re) calculated from the theoretical relationships (for the irregular relative roughness values shown in the Moody diagram) and those obtained from the simulations (for pipes with regular roughness formed by micro-fins). The PEC (Performance Evaluation Criteria) heat transfer efficiency analysis of the geometries under study is also presented, taking into account the criterion of the same pumping power. The highest PEC values, reaching 1.25, are obtained for micro-fins with a height of 0.30 mm and 0.35 mm and with Reynolds numbers above 40,000. In general, for all tested geometries and for large Reynolds numbers (above 20,000), the PEC coefficient reaches values greater than 1, while for lower Reynolds numbers (less than 20,000), its values are less than 1.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3