Self-Sustaining Bioelectrochemical Cell from Fungal Degradation of Lignin-Rich Agrowaste

Author:

Sukri Asiah,Othman RaihanORCID,Abd-Wahab Firdaus,M. Noor NorainiORCID

Abstract

The present work describes a self-sustaining bioelectrochemical system that adopts simple cell configurations and operates in uncontrolled ambient surroundings. The microbial fuel cell (MFC) was comprised of white-rot fungus of Phanaerochaete chrysosporium fed with oil palm empty fruit bunch (EFB) as the substrate. This fungal strain degrades lignin by producing ligninolytic enzymes such as laccase, which demonstrates a specific affinity for oxygen as its electron acceptor. By simply pairing zinc and the air electrode in a membraneless, single-chamber, 250-mL enclosure, electricity could be harvested. The microbial zinc/air cell is capable of sustaining a 1 mA discharge current continuously for 44 days (i.e., discharge capacity of 1056 mAh). The role of the metabolic activities of P. chrysosporium on EFB towards the MFC’s performance is supported by linear sweep voltammetry measurement and scanning electron microscopy observations. The ability of the MFC to sustain its discharge for a prolonged duration despite the fungal microbes not being attached to the air electrode is attributed to the formation of a network of filamentous hyphae under the submerged culture. Further, gradual lignin decomposition by fungal inocula ensures a continuous supply of laccase enzyme and radical oxidants to the MFC. These factors promote a self-sustaining MFC devoid of any control features.

Funder

Kementerian Sains, Teknologi dan Inovasi

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference42 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3