Abstract
This paper presents the feasibility of a fully inkjet-printed, microwave flexible gas sensor based on a resonant electromagnetic transducer in microstrip technology and the impact of the printing process that affects the characteristics of the gas sensor. The sensor is fabricated using silver ink and multi-wall carbon nanotubes (MWCNTs) embedded in poly (3,4-ethylenedioxythiophene) polystyrene (PEDOT: PSS-MWCNTs) as sensitive material for Volatile Organic Compounds (VOCs) detection. Particular attention is paid to the characterization of the printed materials and the paper substrate. The manufacturing process results in a change in relative permittivity of the paper substrate by nearly 20%. Electrical characterization, made in the presence of gas, validates our theoretical approach and the radiofrequency (RF) gas sensor proof of concept.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献