Abstract
Providing useful information to the users by recommending highly demanded products and services is a fundamental part of the business of many top tier companies. Recommender Systems make use of many sources of information to provide users with accurate predictions and novel recommendations of items. Here we propose, DeepMF, a novel collaborative filtering method that combines the Deep Learning paradigm with Matrix Factorization (MF) to improve the quality of both predictions and recommendations made to the user. Specifically, DeepMF performs successive refinements of a MF model with a layered architecture that uses the acquired knowledge in a layer as input for subsequent layers. Experimental results showed that the quality of both the predictions and recommendations of DeepMF overcome the baselines.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献