Abstract
Through the introduction of multifrequency ultrasound technology, remarkable results have been achieved in tissue ablation and other aspects. By using the nonlinear dynamic equation of spherical bubble, the effects of the combination mode of multifrequency ultrasound, the peak negative pressure and its duration, the phase angle difference, and the polytropic index on the transient cavitation threshold in four different media of water, blood, brain, and liver are simulated and analyzed. The simulation results show that under the same frequency difference and initial bubble radius, the transient cavitation threshold of the high-frequency, triple-frequency combination is higher than that of the low-frequency, triple-frequency combination. When the lowest frequency of triple frequencies is the same, the larger the frequency difference, the higher the transient cavitation threshold. When the initial bubble radius is small, the frequency difference has little effect on the transient cavitation threshold of the triple-frequency combination. With the increase of initial bubble radius, the influence of frequency difference on the transient cavitation threshold of the higher frequency combination of triple frequency is more obvious than that of the lower frequency combination of triple frequency. When the duration of peak negative pressure or peak negative pressure of the multifrequency combined ultrasound is longer than that of the single-frequency ultrasound, the transient cavitation threshold of the multifrequency combined ultrasound is lower than that of the single-frequency ultrasound; on the contrary, the transient cavitation threshold of the multifrequency combined ultrasound is higher than that of the single-frequency ultrasound. When the phase angle difference of multifrequency excitation is zero, the corresponding transient cavitation threshold is the lowest, while the change of the polytropic index has almost no effect on the transient cavitation threshold for the multifrequency combination. The research results can provide a reference for multifrequency ultrasound to reduce the transient cavitation threshold, which is of great significance for the practical application of cavitation.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science