Abstract
In this paper, the mechanical characteristics of stabilizing piles embedded in layered bedrocks are studied both experimentally and numerically. The influence of soft and hard interbedded layers in the structure of the bedrock on the mechanical characteristics of stabilizing piles is particularly investigated. The discrete element method is used to numerically investigate the response of the stabilizing piles embedded in composite and inclined bedrocks. The simulation results and comparison with experimental data are presented to demonstrate the effectiveness and accuracy of the discrete element model. As the dip angle of the soft/hard interbedded bedrock layers increases from 0° to 45°, it is observed that the displacement of the embedded section of the stabilizing pile increases and reaches the maximum displacement at 45°. In the range of 45° to 75°, the influence of the dip angle of the layered bedrock on the displacement of the embedded section of the pile is gradually reduced.
Funder
the National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献