Optimal Planning for the Development of Power System in Respect to Distributed Generations Based on the Binary Dragonfly Algorithm

Author:

Kakueinejad Mohammad Hossein,Heydari Azim,Askari Mostafa,Keynia Farshid

Abstract

With the increasing number of population and the rising demand for electricity, providing safe and secure energy to consumers is getting more and more important. Adding dispersed products to the distribution network is one of the key factors in achieving this goal. However, factors such as the amount of investment and the return on the investment on one side, and the power grid conditions, such as loss rates, voltage profiles, reliability, and maintenance costs, on the other hand, make it more vital to provide optimal annual planning methods concerning network development. Accordingly, in this paper, a multilevel method is presented for optimal network power expansion planning based on the binary dragonfly optimization algorithm, taking into account the distributed generation. The proposed objective function involves the minimization of the cost of investment, operation, repair, and the cost of reliability for the development of the network. The effectiveness of the proposed model to solve the multiyear network expansion planning problem is illustrated by applying them on the 33-bus distribution network and comparing the acquired results with the results of other solution methods such as GA, PSO, and TS.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3