Personalized Standard Deviations Improve the Baseline Estimation of Collaborative Filtering Recommendation

Author:

Tan ZhenhuaORCID,He Liangliang,Wu Danke,Chang Qiuyun,Zhang Bin

Abstract

Baseline estimation is a critical component for latent factor-based collaborative filtering (CF) recommendations to obtain baseline predictions by evaluating global deviations for both users and items from personalized ratings. Classical baseline estimation presupposes that the user’s factual rating range is the same as the system’s given rating range. However, from observations on real datasets of movie recommender systems, we found that different users have different actual rating ranges, and users can be classified into four kinds according to their personalized rating criterion, including normal, strict, lenient, and middle. We analyzed ratings’ distributions and found that the proportion of user ratings’ local standard deviation to the system’s global standard deviation is equal to that of the user’s actual rating range to the system’s rating range. We propose an improved and unified baseline estimation model based on the standard deviation’s proportion to alleviate the influence of classical baseline estimation’s limitation. We also apply the proposed baseline estimation model in existing latent factor-based CF recommendations and propose two instances. We performed experiments on full ratings of datasets by cross evaluations, including Flixster, Movielens (10 M), Movielens (latest small), FilmTrust, and MiniFilm. The results prove that the proposed baseline estimation model has better predictive accuracy than the classical model and is efficient in improving prediction performance for existing latent factor-based CF recommendations.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Evaluating Collaborative Filtering Recommender Algorithms: A Survey

2. An Efficient Similarity Measure for User-Based Collaborative Filtering Recommender Systems Inspired by the Physical Resonance Principle

3. Matrix Factorization Techniques for Recommender Systems

4. Major components of the gravity recommendation system

5. Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Modelhttps://www.cs.rochester.edu/twiki/pub/Main/HarpSeminar/Factorization_Meets_the_Neighborhood-_a_Multifaceted_Collaborative_Filtering_Model.pdf

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Serendipity-Oriented Clustering Method for Recommender Systems Based on Collaborative Filtering;Advanced Technologies, Systems, and Applications VII;2022-10-16

2. Discrete Dynamic Modeling Analysis Based on English Learning Motivation;Mathematical Problems in Engineering;2022-08-18

3. Product Recommendation System using MLP Algorithm;International Journal of Advanced Research in Science, Communication and Technology;2022-04-20

4. AERS: Adaptive and Efficient Hybrid Recommendation System based on Web usage Mining;2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2022-04-07

5. A Closer-to-Reality Model for Comparing Relevant Dimensions of Recommender Systems, with Application to Novelty;Information;2021-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3