Abstract
Baseline estimation is a critical component for latent factor-based collaborative filtering (CF) recommendations to obtain baseline predictions by evaluating global deviations for both users and items from personalized ratings. Classical baseline estimation presupposes that the user’s factual rating range is the same as the system’s given rating range. However, from observations on real datasets of movie recommender systems, we found that different users have different actual rating ranges, and users can be classified into four kinds according to their personalized rating criterion, including normal, strict, lenient, and middle. We analyzed ratings’ distributions and found that the proportion of user ratings’ local standard deviation to the system’s global standard deviation is equal to that of the user’s actual rating range to the system’s rating range. We propose an improved and unified baseline estimation model based on the standard deviation’s proportion to alleviate the influence of classical baseline estimation’s limitation. We also apply the proposed baseline estimation model in existing latent factor-based CF recommendations and propose two instances. We performed experiments on full ratings of datasets by cross evaluations, including Flixster, Movielens (10 M), Movielens (latest small), FilmTrust, and MiniFilm. The results prove that the proposed baseline estimation model has better predictive accuracy than the classical model and is efficient in improving prediction performance for existing latent factor-based CF recommendations.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献