Smart Power Electronics–Based Solutions to Interface Solar-Photovoltaics (PV), Smart Grid, and Electrified Transportation: State-of-the-Art and Future Prospects

Author:

Aragon-Aviles Sandra,Trivedi Ashutosh,Williamson Sheldon S.

Abstract

The need to reduce the use of fossil fuels and greenhouse gas (GHG) emissions produced by the transport sector has generated a clear increasing trend in transportation electrification and the future of energy and mobility. This paper reviews the current research trends and future work for power electronics-based solutions that support the integration of photovoltaic (PV) energy sources and smart grid with charging systems for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEV). A compressive overview of isolated and non-isolated DC–DC converters and AC–DC converter topologies used to interface the PV-grid charging facilities is presented. Furthermore, this paper reviews the modes of operation of the system currently used. Finally, this paper explores the future roadmap of research for power electronics solutions related to photovoltaic (PV) systems, smart grid, and transportation electrification.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Control Techniques for AC Microgrids: A Critical Assessment;Sustainability;2023-10-24

2. Modified EV Charging/Discharging Control for Hybrid DC Fast Charging Stations;2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT);2023-03-11

3. High power density thermal management of discrete semiconductor packages enabled by additively manufactured hybrid polymer-metal coolers;Applied Thermal Engineering;2023-02

4. Recent Optimization Techniques for Coordinated Control of Electric Vehicles in Super Smart Power Grids Network: A State of the Art;2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON);2022-12-02

5. An Investigation into the creation of a Monitoring System that Works in Real Time within a Smart Grid Environment;2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC);2022-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3