Abstract
Therapeutically effective treatments of cancer are limited. To calibrate the efficiency of the novel technique we recently discovered to modulate cancer cell viability using tuned electromagnetic fields; H1299 human lung cancer cells were irradiated in a sweeping regime of W-band (75–105 GHz) millimeter waves (MMW) at 0.2 mW/cm2 (2 W/m2). Effects on cell morphology, cell death and senescence were examined and compared to that of non-tumorigenic MCF-10A human epithelial cells. MMW irradiation led to alterations of cell and nucleus morphology of H1299 cells, significantly increasing mortality and senescence over 14 days of observation. Extended irradiation of 10 min duration resulted in complete death of exposed H1299 cell population within two days, while healthy MCF-10A cells remained unaffected even after 16 min of irradiation under the same conditions. Irradiation effects were observed to be specific to MMW treated H1299 cells and absent in the control group of non-irradiated cells. MMW irradiation affected nuclear morphology of H1299 cells only and not of the immortalized MCF-10A cells. Irradiation with low intensity MMW shows an antitumor effect on H1299 lung cancer cells. This method provides a novel treatment modality enabling targeted specificity for various types of cancers.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献