Evaluation of Nitrogen and Phosphorus Removal from a Denitrifying Woodchip Bioreactor Treatment System Receiving Silage Bunker Runoff

Author:

Sarazen Jillian C.,Faulkner Joshua W.,Hurley Stephanie E.

Abstract

Leachate and storm-driven runoff from silage storage bunkers can degrade receiving water bodies if left untreated. This study evaluated a novel treatment system consisting of three treatment tanks with a moving-bed biofilm reactor and paired side-by-side denitrifying woodchip bioreactors for the ability to reduce influent nutrient mass loads. Flow-based samples were taken at four locations throughout the system, at the inflow to the first tank, outflow from the tanks prior to entering the woodchip bioreactors, and from the outflows of both bioreactors. Samples were analyzed for concentrations of nitrogen (N) and phosphorus (P) species. Inflow concentrations were reduced from the bioreactor outflows by an average of 35% for total N (TN) and 16% for total P (TP) concentrations on a storm event basis. The treatment system cumulatively removed 76% of the TN mass load, 71% of the nitrite + nitrate-N (NO2−+NO3−-N) load, 26% of the TP mass load, and 19% of the soluble reactive P load, but was a source of ammonium-N, based on the monitoring of 16 storm events throughout 2019. While the system was effective, very low NO2−+NO3−-N concentrations in the silage bunker runoff entered the bioreactors, which may have inhibited denitrification performance.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3