An Efficient Lossless Compression Method for Periodic Signals Based on Adaptive Dictionary Predictive Coding

Author:

Dai Shaofei,Liu Wenbo,Wang Zhengyi,Li Kaiyu,Zhu Pengfei,Wang Ping

Abstract

This paper reports on an efficient lossless compression method for periodic signals based on adaptive dictionary predictive coding. Some previous methods for data compression, such as difference pulse coding (DPCM), discrete cosine transform (DCT), lifting wavelet transform (LWT) and KL transform (KLT), lack a suitable transformation method to make these data less redundant and better compressed. A new predictive coding approach, basing on the adaptive dictionary, is proposed to improve the compression ratio of the periodic signal. The main criterion of lossless compression is the compression ratio (CR). In order to verify the effectiveness of the adaptive dictionary predictive coding for periodic signal compression, different transform coding technologies, including DPCM, 2-D DCT, and 2-D LWT, are compared. The results obtained prove that the adaptive dictionary predictive coding can effectively improve data compression efficiency compared with traditional transform coding technology.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Multiple Algorithms for Lossless Electrocardiogram Compression;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

2. Lossless Compression of Sensor Signals Using an Untrained Multi-Channel Recurrent Neural Predictor;Applied Sciences;2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3