Characterization of Inter-System Biases in GPS + BDS Precise Point Positioning

Author:

Ke Cheng,Zheng Yanning,Wang Shengli

Abstract

With the combination of multi-GNSS data, the precise-point positioning (PPP) technique can improve its accuracy, availability and reliability: Inter-system bias (ISB) is the non-negligible parameter in multi-GNSS PPP. To further enhance the performance of multi-GNSS PPP, it is crucial to analyze the characterization of inter system biases (ISBs) and model them properly. In this contribution, we comprehensively investigate the characterization of ISBs between global positioning system (GPS) and BeiDou navigation satellite system (BDS) in different situations. (1) We estimate ISB by using different precise products from the Center for Orbit Determination (CODE), Deutsches GeoForschungsZentrum (GFZ) and Wuhan University (WHU). The results indicate that the one-day estimates of ISB are stable when using CODE and WHU products, whereas the estimates based on GFZ products vary remarkably. As for the three-day time series of ISB, a sudden jump exists between two adjacent days, which is due to the change of satellite clock datum; (2) We investigate the ISB characterization affected by the ambient environments of the receivers. The result shows that the ISBs estimated from receivers (and antennas) with same type are still inconsistent, which indicates that the ambient environment, probably the temperature, influences the ISB characterization as well, since the receivers are in different areas; (3) We analyze the ISB characterization affected by receiver and antenna type with the same ambient environment. To ensure the same ambient environment, the ultra-short baselines were applied to investigate the ISB characterization affected by the receiver and antenna type. With the insights into ISB characterizations, we carry out combined GPS and BDS PPP with modeling the ISB as time constant, random walk process and white noise. The results suggest that the random walk process outperforms in most cases, since it strengthens the model to some extend and, at the same time, considers the variation of ISBs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3