Cost-Effective CNNs for Real-Time Micro-Expression Recognition

Author:

Belaiche Reda,Liu Yu,Migniot Cyrille,Ginhac DominiqueORCID,Yang Fan

Abstract

Micro-Expression (ME) recognition is a hot topic in computer vision as it presents a gateway to capture and understand daily human emotions. It is nonetheless a challenging problem due to ME typically being transient (lasting less than 200 ms) and subtle. Recent advances in machine learning enable new and effective methods to be adopted for solving diverse computer vision tasks. In particular, the use of deep learning techniques on large datasets outperforms classical approaches based on classical machine learning which rely on hand-crafted features. Even though available datasets for spontaneous ME are scarce and much smaller, using off-the-shelf Convolutional Neural Networks (CNNs) still demonstrates satisfactory classification results. However, these networks are intense in terms of memory consumption and computational resources. This poses great challenges when deploying CNN-based solutions in many applications, such as driver monitoring and comprehension recognition in virtual classrooms, which demand fast and accurate recognition. As these networks were initially designed for tasks of different domains, they are over-parameterized and need to be optimized for ME recognition. In this paper, we propose a new network based on the well-known ResNet18 which we optimized for ME classification in two ways. Firstly, we reduced the depth of the network by removing residual layers. Secondly, we introduced a more compact representation of optical flow used as input to the network. We present extensive experiments and demonstrate that the proposed network obtains accuracies comparable to the state-of-the-art methods while significantly reducing the necessary memory space. Our best classification accuracy was 60.17% on the challenging composite dataset containing five objectives classes. Our method takes only 24.6 ms for classifying a ME video clip (less than the occurrence time of the shortest ME which lasts 40 ms). Our CNN design is suitable for real-time embedded applications with limited memory and computing resources.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal Emotion Recognition Using Visual, Vocal and Physiological Signals: A Review;Applied Sciences;2024-09-09

2. Eye Movement Recognition: Exploring Trade-Offs in Deep Learning Approaches with Development;Communications in Computer and Information Science;2024

3. A Comparative Study of Traditional and Transformer-based Deep Learning Models for Multi-Class Eye Movement Recognition Using Collected Dataset;2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA);2023-11-14

4. Micro-expression Recognition Based on Residual Network;2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT);2023-10-11

5. Facial Micro-Expressions: An Overview;Proceedings of the IEEE;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3