Investigation of Biomechanical Characteristics of Orthopedic Implants for Tibial Plateau Fractures by Means of Deep Learning and Support Vector Machine Classification

Author:

Niculescu Bogdan,Faur Cosmin Ioan,Tataru Tiberiu,Diaconu Bogdan Marian,Cruceru Mihai

Abstract

An experimental comparative study of the biomechanical behavior of commonly used orthopedic implants for tibial plateau fractures was carried out. An artificial bone model Synbone1110 was used and a Schatzker V type tibial plateau fracture was created in vitro, then stabilized with three different implant types, classic L plate, Locking Plate System (PLS), and Hybrid External Fixator (HEF). The stiffness of the bone—implant assembly was assessed by means of mechanical testing using an automated testing machine. It was found that the classic L plate type internal implant has a significantly higher value of deformation then the other two implant types. In case of the other implant types, PLS had a better performance than HEF at low and medium values of the applied force. At high values of the applied forces, the difference between deformation values of the two types became gradually smaller. An Artificial Neural Network model was developed to predict the implant deformation as a function of the applied force and implant device type. To establish if a clear-cut distinction exists between mechanical performance of PLS and HEF, a Support Vector Machine classifier was employed. At high values of the applied force, the Support Vector Machine (SVM) classifier predicts that no statistically significant difference exists between the performance of PLS and HEF.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3