Fine-Grained Mechanical Chinese Named Entity Recognition Based on ALBERT-AttBiLSTM-CRF and Transfer Learning

Author:

Yao Liguo,Huang Haisong,Wang Kuan-Wei,Chen Shih-Huan,Xiong Qiaoqiao

Abstract

Manufacturing text often exists as unlabeled data; the entity is fine-grained and the extraction is difficult. The above problems mean that the manufacturing industry knowledge utilization rate is low. This paper proposes a novel Chinese fine-grained NER (named entity recognition) method based on symmetry lightweight deep multinetwork collaboration (ALBERT-AttBiLSTM-CRF) and model transfer considering active learning (MTAL) to research fine-grained named entity recognition of a few labeled Chinese textual data types. The method is divided into two stages. In the first stage, the ALBERT-AttBiLSTM-CRF was applied for verification in the CLUENER2020 dataset (Public dataset) to get a pretrained model; the experiments show that the model obtains an F1 score of 0.8962, which is better than the best baseline algorithm, an improvement of 9.2%. In the second stage, the pretrained model was transferred into the Manufacturing-NER dataset (our dataset), and we used the active learning strategy to optimize the model effect. The final F1 result of Manufacturing-NER was 0.8931 after the model transfer (it was higher than 0.8576 before the model transfer); so, this method represents an improvement of 3.55%. Our method effectively transfers the existing knowledge from public source data to scientific target data, solving the problem of named entity recognition with scarce labeled domain data, and proves its effectiveness.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3