Author:
Park Garam,Oh In-Hwan,Park J. M. Sungil,Hahn Seungsoo,Park Seong-Hun
Abstract
Previously, we reported that inorganic–organic hybrid (C6H5CH2CH2NH3)2MnCl4 (Mn-PEA) is antiferromagnetic below 44 K by using magnetic susceptibility and neutron diffraction measurements. Generally, when an antiferromagnetic system is investigated by the neutron diffraction method, half-integer forbidden peaks, which indicate an enlargement of the magnetic cell compared to the chemical cell, should be present. However, in the case of the title compound, integer forbidden peaks are observed, suggesting that the size of the magnetic cell is the same as that of the chemical cell. This phenomenon was until now only theoretically predicted. During our former study, using an irreducible representation method, we suggested that four spin arrangements could be possible candidates and a magnetic cell and chemical cell should coincide. Recently, a magnetic structure analysis employing a magnetic space group has been developed. To confirm our former result by the representation method, in this work we employed a magnetic space group concept, and from this analysis, we show that the magnetic cell must coincide with the nuclear cell because only the Black–White 1 group (equi-translation or same translation group) is possible.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献