Using Hybrid HMM/DNN Embedding Extractor Models in Computational Paralinguistic Tasks

Author:

Vetráb Mercedes1ORCID,Gosztolya Gábor12ORCID

Affiliation:

1. Institute of Informatics, University of Szeged, H-6720 Szeged, Hungary

2. ELKH-SZTE Research Group on Artificial Intelligence, H-6720 Szeged, Hungary

Abstract

The field of computational paralinguistics emerged from automatic speech processing, and it covers a wide range of tasks involving different phenomena present in human speech. It focuses on the non-verbal content of human speech, including tasks such as spoken emotion recognition, conflict intensity estimation and sleepiness detection from speech, showing straightforward application possibilities for remote monitoring with acoustic sensors. The two main technical issues present in computational paralinguistics are (1) handling varying-length utterances with traditional classifiers and (2) training models on relatively small corpora. In this study, we present a method that combines automatic speech recognition and paralinguistic approaches, which is able to handle both of these technical issues. That is, we trained a HMM/DNN hybrid acoustic model on a general ASR corpus, which was then used as a source of embeddings employed as features for several paralinguistic tasks. To convert the local embeddings into utterance-level features, we experimented with five different aggregation methods, namely mean, standard deviation, skewness, kurtosis and the ratio of non-zero activations. Our results show that the proposed feature extraction technique consistently outperforms the widely used x-vector method used as the baseline, independently of the actual paralinguistic task investigated. Furthermore, the aggregation techniques could be combined effectively as well, leading to further improvements depending on the task and the layer of the neural network serving as the source of the local embeddings. Overall, based on our experimental results, the proposed method can be considered as a competitive and resource-efficient approach for a wide range of computational paralinguistic tasks.

Funder

NRDI Office of the Hungarian Ministry of Innovation and Technology

Artificial Intelligence National Laboratory Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3