Abstract
In this paper, the artificial neural networks (ANN) based deep learning (DL) techniques were developed to solve the neutron diffusion problems for the continuous neutron flux distribution without domain discretization in advance. Due to its mesh-free property, the DL solution can easily be extended to complicated geometries. Two specific realizations of DL methods with different boundary treatments are developed and compared for accuracy and efficiency, including the boundary independent method (BIM) and boundary dependent method (BDM). The performance comparison on analytic benchmark indicates BDM being the preferred DL method. Novel constructions of trial function are proposed to generalize the application of BDM. For a more in-depth understanding of the BDM on diffusion problems, the influence of important hyper-parameters is further investigated. Numerical results indicate that the accuracy of BDM can reach hundreds of times higher than that of BIM on diffusion problems. This work can provide a new perspective for applying the DL method to nuclear reactor calculations.
Reference36 articles.
1. Nuclear Reactor Analysis;Duderstadt,1976
2. Finite Element Methods for Reactor Analysis
3. Numerical Solution of the Two-Group Diffusion Equations in X-Y Geometry
4. VENTURE: A Code Block for Solving Multigroup Neutronics Problems Applying the Finite-Difference Diffusion-Theory Approximation to Neutron Transport;Vondy,1975
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献