Abstract
At present, in the field of video-based human action recognition, deep neural networks are mainly divided into two branches: the 2D convolutional neural network (CNN) and 3D CNN. However, 2D CNN’s temporal and spatial feature extraction processes are independent of each other, which means that it is easy to ignore the internal connection, affecting the performance of recognition. Although 3D CNN can extract the temporal and spatial features of the video sequence at the same time, the parameters of the 3D model increase exponentially, resulting in the model being difficult to train and transfer. To solve this problem, this article is based on 3D CNN combined with a residual structure and attention mechanism to improve the existing 3D CNN model, and we propose two types of human action recognition models (the Residual 3D Network (R3D) and Attention Residual 3D Network (AR3D)). Firstly, in this article, we propose a shallow feature extraction module and improve the ordinary 3D residual structure, which reduces the parameters and strengthens the extraction of temporal features. Secondly, we explore the application of the attention mechanism in human action recognition and design a 3D spatio-temporal attention mechanism module to strengthen the extraction of global features of human action. Finally, in order to make full use of the residual structure and attention mechanism, an Attention Residual 3D Network (AR3D) is proposed, and its two fusion strategies and corresponding model structure (AR3D_V1, AR3D_V2) are introduced in detail. Experiments show that the fused structure shows different degrees of performance improvement compared to a single structure.
Funder
National Natural Science Foundation of China
Guang dong province science and technology plan projects
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference25 articles.
1. Two-stream convolutional networks for action recognition in videos;Simonyan,2014
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献