A Security Framework for Increasing Data and Device Integrity in Internet of Things Systems

Author:

Dirin Amir1ORCID,Oliver Ian2,Laine Teemu H.3ORCID

Affiliation:

1. Department of ICT, Metropolia University of Applied Sciences, 00920 Helsinki, Finland

2. Nokia Bell Labs, 02610 Espoo, Finland

3. Department of Digital Media, Ajou University, Suwon 16499, Republic of Korea

Abstract

The trustworthiness of a system is not just about proving the identity or integrity of the hardware but also extends to the data, control, and management planes of communication between devices and the software they are running. This trust in data and device integrity is desirable for Internet of Things (IoT) systems, especially in critical environments. In this study, we developed a security framework, IoTAttest, for building IoT systems that leverage the Trusted Platform Module 2.0 and remote attestation technologies to enable the establishment of IoT devices’ collected data and control plan traffic integrity. After presenting the features and reference architecture of IoTAttest, we evaluated the privacy preservation and validity through the implementation of two proof-of-concept IoT applications that were designed by two teams of university students based on the reference architecture. After the development, the developers answered open questions regarding their experience and perceptions of the framework’s usability, limitations, scalability, extensibility, potential, and security. The results indicate that IoTAttest can be used to develop IoT systems with effective attestation to achieve device and data integrity. The proof-of-concept solutions’ outcomes illustrate the functionalities and performance of the IoT framework. The feedback from the proof-of-concept developers affirms that they perceived the framework as usable, scalable, extensible, and secure.

Funder

Ministry of Science and ICT

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3