Rail Corrugation Index Development by Sound-Field Excitation on the Carriage Floor of In-Service Train

Author:

Hsu Wei-Lun1ORCID,Chang Chia-Ming2ORCID

Affiliation:

1. Department of Systems Engineering and Naval Architecture, National Taiwan Ocean University, Keelung 202301, Taiwan

2. Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan

Abstract

The steel rail and wheel in the railway system offer a high precision and smooth-running surface. Nevertheless, the point of contact between the rail and wheel presents a critical area that can give rise to rail corrugation. This phenomenon can potentially elevate sound and vibration levels in the vicinity considerably, necessitating advanced monitoring and assessment measures. Recently, many efforts have been directed towards utilizing in-service trains for evaluating rail corrugation, and the evaluation has primarily relied on axle-box acceleration (ABA). However, the ABA measurements require a higher threshold for vibration detection. This study introduces a novel approach to rail corrugation detection by carriage floor acceleration (CFA), aimed at lowering the detection threshold. The method capitalizes on the acceleration data sensed on the carriage floor, which is induced by the sound pressure (e.g., sound-field excitation) generated at the wheel–rail contact point. An exploration of the correlation between these datasets is undertaken by simultaneously measuring both ABA and CFA. Moreover, a pivotal aspect of this research is the development of the eigenfrequency rail corrugation index (E-RCI), a mechanism that culminates energy around specific eigenfrequencies by CFA. Through this index, a focused analysis of rail corrugation patterns is facilitated. The study further delves into the stability, repeatability, and sensitivity of the E-RCI via varied measurement scenarios. Ultimately, the CFA-based rail corrugation identification is verified, establishing its practical applicability and offering a distinct approach to detecting and characterizing rail corrugation phenomena. This study has introduced an innovative methodology for rail corrugation detection using CFA, with the principal objective of lowering the detection threshold. This approach offers an efficient measurement technique for identifying rail corrugation areas, thereby potentially reducing maintenance costs and enhancing efficiency within the railway industry.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3