Flow-Based Programming for Machine Learning

Author:

Mahapatra TanmayaORCID,Banoo Syeeda Nilofer

Abstract

Machine Learning (ML) has gained prominence and has tremendous applications in fields like medicine, biology, geography and astrophysics, to name a few. Arguably, in such areas, it is used by domain experts, who are not necessarily skilled-programmers. Thus, it presents a steep learning curve for such domain experts in programming ML applications. To overcome this and foster widespread adoption of ML techniques, we propose to equip them with domain-specific graphical tools. Such tools, based on the principles of flow-based programming paradigm, would support the graphical composition of ML applications at a higher level of abstraction and auto-generation of target code. Accordingly, (i) we have modelled ML algorithms as composable components; (ii) described an approach to parse a flow created by connecting several such composable components and use an API-based code generation technique to generate the ML application. To demonstrate the feasibility of our conceptual approach, we have modelled the APIs of Apache Spark ML as composable components and validated it in three use-cases. The use-cases are designed to capture the ease of program specification at a higher abstraction level, easy parametrisation of ML APIs, auto-generation of the ML application and auto-validation of the generated model for better prediction accuracy.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference42 articles.

1. Spark in Actionhttp://kingcall.oss-cn-hangzhou.aliyuncs.com/blog/pdf/Spark%20in%20Action30101603975704271.pdf

2. Mashups: Concepts, Models and Architectures;Daniel,2014

3. MLlib: Machine Learning in Apache Spark;Meng;J. Mach. Learn. Res.,2016

4. Apache Spark

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Notebook: A tool for enhanced Management of Machine Learning models and procedures in the Healthcare Domain;2023 International Conference on Applied Mathematics & Computer Science (ICAMCS);2023-08-08

2. Dataflow graphs as complete causal graphs;2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3