Selecting Workers Wisely for Crowdsourcing When Copiers and Domain Experts Co-exist

Author:

Fang Xiu,Si Suxin,Sun Guohao,Sheng Quan Z.,Wu Wenjun,Wang Kang,Lv Hang

Abstract

Crowdsourcing integrates human wisdom to solve problems. Tremendous research efforts have been made in this area. However, most of them assume that workers have the same credibility in different domains and workers complete tasks independently. This leads to an inaccurate evaluation of worker credibility, hampering crowdsourcing results. To consider the impact of worker domain expertise, we adopted a vector to more accurately measure the credibility of each worker. Based on this measurement and prior task domain knowledge, we calculated fine-grained worker credibility on each given task. To avoid tasks being assigned to dependent workers who copy answers from others, we conducted copier detection via Bayesian analysis. We designed a crowdsourcing system called SWWC composed of a task assignment stage and a truth discovery stage. In the task assignment stage, we assigned tasks wisely to workers based on worker domain expertise calculation and copier removal. In the truth discovery stage, we computed the estimated truth and worker credibility by an iterative method. Then, we updated the domain expertise of workers to facilitate the upcoming task assignment. We also designed initialization algorithms to better initialize the accuracy of new workers. Theoretical analysis and experimental results showed that our method had a prominent advantage, especially under a copying situation.

Funder

Fundamental Scientific Research Operation Fees of Central Universities

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference63 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CoachLM: Automatic Instruction Revisions Improve the Data Quality in LLM Instruction Tuning;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3