Evaluation of a Reputation Management Technique for Autonomous Vehicles

Author:

Kianersi Darius,Uppalapati Suraj,Bansal AnirudhORCID,Straub Jeremy

Abstract

Future autonomous vehicles will rely heavily on sharing and communicating information with other vehicles to maximize their efficiency. These interactions, which will likely include details about the positions of surrounding vehicles and obstacles on the road, are essential to their decision-making and the prevention of accidents. However, malicious vehicles—those that intentionally communicate false information—have the capacity to adversely influence other vehicles in the network. This paper presents and evaluates a reputation management system, capable of identifying malicious actors, to mitigate their effects on the vehicle network. The viability of multiple report weighting schemes to calculate reputation is evaluated through a simulation, and a blockchain-based backend for the reputation management system to securely maintain and communicate reputation data is proposed. Storage and computational challenges are considered. This paper shows that weighting schemas, related to the number and reputation of witnesses, positively affect the accuracy of the model and are able to identify malicious vehicles in a network with consistent accuracy and scalability.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference53 articles.

1. Autonomous vehicle implementation predictions: Implications for transport planning;Litman;NAS Transp. Res. Inf. Database,2020

2. Autonomous vehicle heaven or hell? Creating a transportation revolution that benefits all;Creger;NAS Transp. Res. Inf. Database,2019

3. Introducing autonomous buses and taxis: Quantifying the potential benefits in Japanese transportation systems

4. Perceived benefits and concerns of autonomous vehicles: An exploratory study of millennials’ sentiments of an emerging market

5. Consumer perception and intended adoption of autonomous-vehicle technology: Findings from a university population survey;Menon;NAS Transp. Res. Inf. Database,2016

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3