High-Precision Control of Aviation Photoelectric-Stabilized Platform Using Extended State Observer-Based Kalman Filter

Author:

Wang Lu12,Li Xiantao2,Liu Yuzhang2,Mao Dapeng2,Zhang Bao2

Affiliation:

1. University of Chinese Academy of Sciences, No.19, Yuquan Rd., Beijing 100049, China

2. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

Abstract

The accuracy of the line-of-sight of aviation photoelectric optoelectronic stabilization platforms is limited by two factors: external disturbance and sensor noise. An extended state observer (ESO) can effectively improve their anti-interference ability. However, due to the serious problem of gyroscope noise, further improvement of an ESO’s disturbance suppression effect is limited. This article proposes a control structure that combines a Kalman filter (KF) and ESO, effectively improving upon the interference suppression ability of a traditional ESO under the influence of noise. Firstly, an ESO was used to observe the lumped disturbance of the system, and then, the observed disturbance was compensated for in the control loop. Secondly, based on the compensation servo control system, the state equation of the system was reconstructed using a Kalman filter. Finally, the reconstructed filtered state variables were iterated onto the universal state observer, achieving the observation of disturbances while filtering out sensor noise. Under the conditions of a laboratory flight simulation turntable, the line-of-sight stability accuracy level was improved under disturbance excitation. It can be seen that the combination of a Kalman filter and extended disturbance observer proposed in this project improves the ESO’s anti-interference ability under the influence of noise.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference39 articles.

1. Inertially stabilized platforms for optical imaging systems;Masten;IEEE Control Syst. Mag.,2008

2. Inertially stabilized platform technology;Hilkert;IEEE Control Syst. Mag.,2008

3. Control systems for mobile Satcom antennas;Debruin;IEEE Control Syst. Mag.,2008

4. Acquistion and Position Control for inter-satellite Laser Communications;Guelman;IEEE Trans. Aerosp. Electron. Syst.,2004

5. Research and implementation of data processing method for the three-axis stabilized platform airborne gravity measuring system;Luo;Geophys. Geochem. Explor.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3