Effect of Gabapentin in a Neuropathic Pain Model in Mice Overexpressing Human Wild-Type or Human Mutated Torsin A

Author:

Scuteri DamianaORCID,Rombolà LauraORCID,Natoli SilviaORCID,Pisani AntonioORCID,Bonsi PaolaORCID,Watanabe Chizuko,Bagetta GiacintoORCID,Tonin Paolo,Corasaniti Maria TizianaORCID

Abstract

Background: DYT1 dystonia is the most common form of early-onset inherited dystonia, which is caused by mutation of torsin A (TA) belonging to the “ATPases associated with a variety of cellular activities” (AAA + ATPase). Dystonia is often accompanied by pain, and neuropathic pain can be associated to peripherally induced movement disorder and dystonia. However, no evidence exists on the effect of gabapentin in mice subjected to neuropathic pain model overexpressing human normal or mutated TA. Methods: Mice subjected to L5 spinal nerve ligation (SNL) develop mechanical allodynia and upregulation of the α2δ-1 L-type calcium channel subunit, forming a validated experimental model of neuropathic pain. Under these experimental conditions, TA is expressed in dorsal horn neurons and astrocytes and colocalizes with α2δ-1. Similar to this subunit, TA is overexpressed in dorsal horn 7 days after SNL. This model has been used to investigate (1) basal mechanical sensitivity; (2) neuropathic pain phases; and (3) the effect of gabapentin, an α2δ-1 ligand used against neuropathic pain, in non-transgenic (NT) C57BL/6 mice and in mice overexpressing human wild-type (hWT) or mutant (hMT) TA. Results: In comparison to non-transgenic mice, the threshold for mechanical sensitivity in hWT or hMT does not differ (Kruskal–Wallis test = 1.478; p = 0.4777, although, in the latter animals, neuropathic pain recovery phase is delayed. Interestingly, gabapentin (100 mg/Kg) reduces allodynia at its peak (occurring between post-operative day 7 and day 10) but not in the phase of recovery. Conclusions: These data lend support to the investigation on the role of TA in the molecular machinery engaged during neuropathic pain.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference58 articles.

1. The problem of adult-onset idiopathic torsion dystonia and other isolated dyskinesias in adult life (including blepharospasm, oromandibular dystonia, dystonic writer’s cramp, and torticollis, or axial dystonia);Marsden;Adv. Neurol.,1976

2. A new twist on the anatomy of dystonia: The basal ganglia and the cerebellum?

3. Sensorimotor integration in movement disorders

4. Abnormalities of sensorimotor integration in focal dystonia

5. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3