Unpaired Underwater Image Synthesis with a Disentangled Representation for Underwater Depth Map Prediction

Author:

Zhao Qi,Xin Zhichao,Yu ZhibinORCID,Zheng Bing

Abstract

As one of the key requirements for underwater exploration, underwater depth map estimation is of great importance in underwater vision research. Although significant progress has been achieved in the fields of image-to-image translation and depth map estimation, a gap between normal depth map estimation and underwater depth map estimation still remains. Additionally, it is a great challenge to build a mapping function that converts a single underwater image into an underwater depth map due to the lack of paired data. Moreover, the ever-changing underwater environment further intensifies the difficulty of finding an optimal mapping solution. To eliminate these bottlenecks, we developed a novel image-to-image framework for underwater image synthesis and depth map estimation in underwater conditions. For the problem of the lack of paired data, by translating hazy in-air images (with a depth map) into underwater images, we initially obtained a paired dataset of underwater images and corresponding depth maps. To enrich our synthesized underwater dataset, we further translated hazy in-air images into a series of continuously changing underwater images with a specified style. For the depth map estimation, we included a coarse-to-fine network to provide a precise depth map estimation result. We evaluated the efficiency of our framework for a real underwater RGB-D dataset. The experimental results show that our method can provide a diversity of underwater images and the best depth map estimation precision.

Funder

technology project of 630 Hainan province of China

Natural Science Foundation of Ningbo

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3