Electrochemical and Thermal Analysis of Lithium-Ion Batteries Based on Variable Solid-State Diffusion Coefficient Concept

Author:

Yao Ping1,Liu Xuewen1

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201600, China

Abstract

Accurate battery models are of great significance for the optimization design and management of lithium-ion batteries. This study uses a pseudo-two-dimensional electrochemical model combined with a three-dimensional thermal model to describe the electrodynamics and thermodynamics of commercial LIBs and adopts the concept of variable solid-state diffusion in the electrochemical model to improve the fitting ability of the model. Compared with the discharge curve without the VSSD concept, the progressiveness of the model is verified. On the other hand, by comparing the temperature distribution of batteries with different negative electrode thicknesses, it is found that the battery temperature decreases with the increase in battery thickness. At the same time, with the increase in active material volume fraction, the gradient of electrochemical performance is greater, and the heat generation rate is higher. This model can be used for online management of batteries, such as estimating charging status and internal temperature, and further constructing a lithium battery electrochemical capacity degradation model based on the VSSD concept to study the aging behavior of lithium batteries.

Publisher

MDPI AG

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3