State of Charge Estimation in Batteries for Electric Vehicle Based on Levenberg–Marquardt Algorithm and Kalman Filter

Author:

Huang Qian1ORCID,Li Junting1,Xu Qingshan2,He Chao1,Yang Chenxi1,Cai Li1,Xu Qipin3,Xiang Lihong1,Zou Xiaojiang4,Li Xiaochuan5

Affiliation:

1. School of Electronics and Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China

2. School of Electrical Engineering, Southeast University, Nanjing 211189, China

3. State Grid Electric Power Research Institute, Nanjing 211100, China

4. Chongqing Andao Cheng Automobile Technology Limited, Chongqing 404130, China

5. Chongqing Hang Ying Automobile Manufacturing Limited, Chongqing 404100, China

Abstract

A new optimization method for estimating the State of Charge (SOC) of battery charge state is proposed. This method incorporates the Levenberg–Marquardt Algorithm (LMA) for online parameter identification and the Extended Kalman Filter (EKF) for SOC. On the one hand, the LMA efficiently alleviates the ’Data saturation’ problem experienced by least squares methods by dynamically adjusting weights of data. On the other hand, the EKF improves the robustness and adaptability of SOC estimation. Simulation results under Hybrid Pulse Power Characteristic (HPPC) conditions demonstrate that this new approach offers superior performance in SOC estimation in batteries for electric vehicles compared to existing methods, with better tracking of the true SOC curve, reduced estimation error, and improved convergence.

Funder

natural science foundation of Chongqing

Science and Technology Research Program of Chongqing Municipal Education Commission

Wanzhou Science and Technology Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3