A Novel Battery Temperature-Locking Method Based on Self-Heating Implemented with an Original Driving Circuit While Electric Vehicle Driving: A Numerical Investigation

Author:

Li Wei12ORCID,Xiong Shusheng23,Shi Wei3

Affiliation:

1. Jiaxing Research Institute, Zhejiang University, Jiaxing 314031, China

2. Longquan Industrial Innovation Research Institute, Longquan 323700, China

3. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

In extremely cold environments, when battery electric vehicles (BEVs) are navigating urban roads at low speeds, the limited heating capacity of the on-board heat pump system and positive temperature coefficient (PTC) device can lead to an inevitable decline in battery temperature, potentially falling below its permissible operating range. This situation can subsequently result in vehicle malfunctions and, in severe cases, traffic accidents. Henceforth, a novel battery self-heating method during driving is proposed to maintain battery temperature. This approach is ingeniously embedded within the heating mechanism within the motor driving system without any necessity to alter or modify the existing driving circuitry. In the meantime, the battery voltage can be regulated to prevent it from surpassing the limit, thereby ensuring the battery’s safety. This method introduces the dead zone into the space vector pulse width modulation (SVPWM) algorithm to form the newly proposed dSVPWM algorithm, which successfully changes the direction of the bus current in a PWM period and forms AC, and the amplitude of the battery alternating current (AC) can also be controlled by adjusting the heating intensity defined by the ratio of the dead zone and the compensation vector to the original zero vector. Through the Simulink model of the motor driving system, the temperature hysteresis locking strategy, grounded in the field-oriented control (FOC) method and employing the dSVPWM algorithm, has been confirmed to provide controllable and sufficiently stable motor speed regulation. During the low-speed phase of the China Light Vehicle Test Cycle (CLTC), the battery temperature fluctuation is meticulously maintained within a range of ±0.2 °C. The battery’s minimum temperature has been successfully locked at around −10 °C. In contrast, the battery temperature would decrease by a significant 1.44 °C per minute without the implementation of the temperature-locking strategy. The voltage of the battery pack is always regulated within the range of 255~378 V. It remains within the specified upper and lower thresholds. The battery voltage overrun can be effectively avoided.

Funder

the Open Foundation for Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3