Optimized Longitudinal and Lateral Control Strategy of Intelligent Vehicles Based on Adaptive Sliding Mode Control

Author:

Wang Yun1,Wang Zhanpeng1ORCID,Shi Dapai1ORCID,Chu Fulin1,Guo Junjie1,Wang Jiaheng1

Affiliation:

1. Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China

Abstract

To improve the tracking accuracy and robustness of the path-tracking control model for intelligent vehicles under longitudinal and lateral coupling constraints, this paper utilizes the Kalman filter algorithm to design a longitudinal and lateral coordinated control (LLCC) strategy optimized by adaptive sliding mode control (ASMC). First, a three-degree-of-freedom (3-DOF) vehicle dynamics model was established. Next, under the fuzzy adaptive Unscented Kalman filter (UKF) theory, the vehicle state parameter estimation and road adhesion coefficient (RAC) observer were designed to estimate vehicle speed (VS), yaw rate (YR), sideslip angle (SA), and RAC. Then, a layered control concept was adopted to design the path-tracking controller, with a target VS, YR, and SA as control objectives. An upper-level adaptive sliding mode controller was designed using RBF neural networks, while a lower-level tire force distribution controller was designed using distributed sequential quadratic programming (DSQP) to obtain an optimal tire driving force. Finally, the control strategy was validated using Carsim and Matlab/Simulink software under different road adhesion coefficients and speeds. The findings indicate that the optimized control strategy is capable of adaptively adjusting control parameters to accommodate various complex conditions, enhancing the tracking precision and robustness of vehicles even further.

Funder

Project for Humanities and Social Sciences in Universities of Hubei Province

Hubei Provincial Department of Education

2024 “Xiangjiang Policy Discussion” Key Project of the Xiangyang Federation of Social Sciences and the Xiangyang Cultural Xiangyang Research Association

Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3