Abstract
Vehicle type classification plays an essential role in developing an intelligent transportation system (ITS). Based on the modern accomplishments of deep learning (DL) on image classification, we proposed a model based on transfer learning, incorporating data augmentation, for the recognition and classification of Bangladeshi native vehicle types. An extensive dataset of Bangladeshi native vehicles, encompassing 10,440 images, was developed. Here, the images are categorized into 13 common vehicle classes in Bangladesh. The method utilized was a residual network (ResNet-50)-based model, with extra classification blocks added to improve performance. Here, vehicle type features were automatically extracted and categorized. While conducting the analysis, a variety of metrics was used for the evaluation, including accuracy, precision, recall, and F1 − Score. In spite of the changing physical properties of the vehicles, the proposed model achieved progressive accuracy. Our proposed method surpasses the existing baseline method as well as two pre-trained DL approaches, AlexNet and VGG-16. Based on result comparisons, we have seen that, in the classification of Bangladeshi native vehicle types, our suggested ResNet-50 pre-trained model achieves an accuracy of 98.00%.
Funder
National Key Research and Development Program of China.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献