Central Composite Experiment Design (CCD)-Response Surface Method (RSM) to Optimize the Sintering Process of Ti-6Al-4V Alloy

Author:

Xia Jing,Liu Shaopeng,Zhang Bing,Chen Yungui

Abstract

It is widely acknowledged that the blended elemental (BE) powder metallurgy (PM) Ti6Al4V alloy attracted unusual due to its low cost and comprehensive mechanical properties. However, the high porosity and mediocre mechanical properties of traditional vacuum sintering limited its application. To achieve better mechanical performance, the central composite designs (CCDs) method was employed to analyze the influence of sintering parameters, such as sintering temperature (St), heating rate (Hr), and holding time (Ht). The results indicated that St makes the most significant contribution to compressive strength and sintering density, accounting for 95.5% and 86.54% respectively. In addition, Ht makes the most significant contribution to compression ratio, which accounted for 89.35%. Through the analysis of response surface methodology (RSM), the optimum sintering parameters (St, Ht, Hr) could be considered to be 1300 °C, 148 min and 5 °C/min. In addition, verification experiments were carried out under the optimum conditions, and the experimental results were in good agreement with the predicted values, since the deviation of the predicted and experimental values was less than 4.9%. Therefore, the results of this study could certify the reliability of CCDs method, which would contribute to the development of titanium alloys with low cost and high mechanical properties.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3