GPU-Accelerated Cellular Automaton Model for Grain Growth during Directional Solidification of Nickel-Based Superalloy

Author:

Zhang YongjiaORCID,Zhou Jianxin,Yin Yajun,Shen Xu,Shehabeldeen Taher A.ORCID,Ji Xiaoyuan

Abstract

To accelerate the large-scale cellular automaton (CA) simulation for grain growth, a parallel CA model for grain growth was developed. The model was implemented based on the compute unified device architecture (CUDA) parallel computing platform. The model was verified by the grain growth of a single crystal and the columnar-to-equiaxed transition (CET) of an Al-7wt% Si specimen of uniform undercooling with a constant cooling rate. The grid independence of the model was verified. The grain growth of a plate-like casting of nickel-based superalloy during directional solidification process was simulated and the obtained results of grain density at each section with different heights were compared with the experimental data. The CET transition of directional solidified Al-7wt% Si cylindrical ingot was simulated. The grain texture and cooling curves were in good agreement with experimental results from the literature. Finally, high parallel performance of the CA model was obtained and evaluated.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3