Temperature Effects on Tensile Deformation Behavior of a Medium Manganese TRIP Steel and a Quenched and Partitioned Steel

Author:

Poling Whitney A.,De Moor Emmanuel,Speer John G.,Findley Kip O.

Abstract

Third-generation advanced high-strength steels (AHSS) containing metastable retained austenite are being developed for the structural components of vehicles to reduce vehicle weight and improve crash performance. The goal of this work was to compare the effect of temperature on austenite stability and tensile mechanical properties of two steels, a quenched and partitioned (Q&P) steel with a martensite and retained austenite microstructure, and a medium manganese transformation-induced plasticity (TRIP) steel with a ferrite and retained austenite microstructure. Quasi-static tensile tests were performed at temperatures between −10 and 85 °C for the Q&P steel (0.28C-2.56Mn-1.56Si in wt.%), and between −10 and 115 °C for the medium manganese TRIP steel (0.14C-7.14Mn-0.23Si in wt.%). X-ray diffraction measurements as a function of strain were performed from interrupted tensile tests at all test temperatures. For the medium manganese TRIP steel, austenite stability increased significantly, serrated flow behavior changed, and tensile strength and elongation changed significantly with increasing temperature. For the Q&P steel, flow stress was mostly insensitive to temperature, uniform elongation decreased with increasing temperature, and austenite stability increased with increasing temperature. The Olson–Cohen model for the austenite-to-martensite transformation as a function of strain showed good agreement for the medium manganese TRIP steel data and fit most of the Q&P steel data above 1% strain.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference71 articles.

1. Advanced High-Strength Steels Application Guidelines Version 6.0;Keeler,2017

2. Strategies for Third-Generation Advanced High Strength Steel Development;De Moor;AIST Trans. Iron Steel Technol.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3