External-Field-Induced Phase Transformation and Associated Properties in a Ni50Mn34Fe3In13 Metamagnetic Shape Memory Wire

Author:

Chen ZhenORCID,Cong Daoyong,Li ShileiORCID,Zhang Yin,Li Shaohui,Cao Yuxian,Li Shengwei,Song Chao,Ren YangORCID,Wang Yandong

Abstract

Metamagnetic shape memory alloys exhibit a series of intriguing multifunctional properties and have great potential for applications in magnetic actuation, sensing and magnetic refrigeration. However, the poor mechanical properties of these alloys with hardly any tensile deformability seriously limit their practical application. In the present work, we developed a Ni-Fe-Mn-In microwire that exhibits both a giant, tensile superelasticity and a magnetic-field-induced first-order phase transformation. The recoverable strain of superelasticity is more than 20% in the temperature range of 233–283 K, which is the highest recoverable strain reported heretofore in Ni-Mn-based shape memory alloys (SMAs). Moreover, the present microwire exhibits a large shape memory effect with a recoverable strain of up to 13.9% under the constant tensile stress of 225 MPa. As a result of the magnetic-field-induced first-order phase transformation, a large reversible magnetocaloric effect with an isothermal entropy change ΔSm of 15.1 J kg−1 K−1 for a field change from 0.2 T to 5 T was achieved in this microwire. The realization of both magnetic-field and tensile-stress-induced transformations confers on this microwire great potential for application in miniature multi-functional devices and provides an opportunity for multi-functional property optimization under coupled multiple fields.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Funds for Creative Research Groups of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3