Influence of the Thickness of the Reaction Zone in Aluminum/Stainless Steel Brazed Joints on the Mechanical Properties

Author:

Fedorov VasiliiORCID,Uhlig ThomasORCID,Wagner GuntramORCID

Abstract

The study deals with the characterization of the relationship between the microstructure of the reaction zone and the mechanical properties in the brazed joints of aluminum alloy 3003 and stainless steel AISI 304 in order to determine the influence of the intermetallic layers on the tensile shear strength of the joints. The joints were produced by induction brazing using an AlSi10 filler in an argon atmosphere at a temperature of 600 °C. Due to the local heat input into the liquid brazing filler during a short brazing time, a thin reaction zone is formed in the brazed joints (~1 µm), which ensures good mechanical properties of the joints. In order to observe the growth kinetics of the reaction zone in the brazed joints and to investigate the influence of the thickness of the reaction zone on the mechanical properties of the brazed joints, the joints were aged at temperatures of 200 °C and 500 °C for 6, 48 and 120 h. The results have shown that the thickness of this layer increases to a maximum of 2 µm depending on the duration of the thermal aging at a temperature of 200 °C. The results of the tensile shear strength tests have shown that the brazed joints with this thin layer ensure a high strength. The thermal aging at a temperature of 500 °C influences the growth of the reaction zone in the brazed joints significantly. The total thickness of the reaction zone increases to a maximum of 12 µm during the thermal aging. The results of the tensile shear tests of these joints have shown that the thermal aging at a higher temperature leads to a decrease of the tensile shear strength of the brazed joints to 67% due to the growth of the existing intermetallic layer and the formation of a new intermetallic layer in the reaction zone.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3