Production and Properties of High Entropy Carbide Based Hardmetals

Author:

Pötschke JohannesORCID,Dahal Manisha,Vornberger AnneORCID,Herrmann MathiasORCID,Michaelis Alexander

Abstract

Dense, high-entropy carbide cobalt-bonded hardmetals with two different compositions, namely (Hf-Ta-Ti-Nb-V)C-19.2 vol% Co and (Ta-Ti-Nb-V-W)C-19.2 vol% Co, were successfully manufactured by gas pressure sintering (SinterHIP) at 1400 °C and 100 bar Ar pressure. The microstructure of these hardmetals consists of a rigid skeletal carbide phase embedded in a tough Co binder phase. EDS mappings showed that the high-entropy carbide phase did not decompose and that a typical hardmetal microstructure was realized. Only in the case of the (Hf-Ta-Ti-Nb-V)C-Co hardmetal was some undissolved TaC and HfO2, as well as some clustered vanadium titanium carbide phase, found, resulting in a split-up of the HEC phase into two very similar HEC phases. This resulted in a reduced hardness to fracture toughness ratio for this composition. Measurements of magnetic saturation polarization showed values between 57.5% and 70% of theoretical magnetic saturation polarization, indicating marginal dissolution of the carbide-forming metal elements in the binder phase. The hardness value HV10 for (Hf-Ta-Ti-Nb-V)C-19.2 vol% Co was 1203 HV10 and 1432 HV10 for (Ta-Ti-Nb-V-W)C-19.2 vol% Co.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3