Early-Stage Recovery of Lithium from Tailored Thermal Conditioned Black Mass Part I: Mobilizing Lithium via Supercritical CO2-Carbonation

Author:

Schwich Lilian,Schubert Tom,Friedrich BerndORCID

Abstract

In the frame of global demand for electrical storage based on lithium-ion batteries (LIBs), their recycling with a focus on the circular economy is a critical topic. In terms of political incentives, the European legislative is currently under revision. Most industrial recycling processes target valuable battery components, such as nickel and cobalt, but do not focus on lithium recovery. Especially in the context of reduced cobalt shares in the battery cathodes, it is important to investigate environmentally friendly and economic and robust recycling processes to ensure lithium mobilization. In this study, the method early-stage lithium recovery (“ESLR”) is studied in detail. Its concept comprises the shifting of lithium recovery to the beginning of the chemo-metallurgical part of the recycling process chain in comparison to the state-of-the-art. In detail, full NCM (Lithium Nickel Manganese Cobalt Oxide)-based electric vehicle cells are thermally treated to recover heat-treated black mass. Then, the heat-treated black mass is subjected to an H2O-leaching step to examine the share of water-soluble lithium phases. This is compared to a carbonation treatment with supercritical CO2, where a higher extent of lithium from the heat-treated black mass can be transferred to an aqueous solution than just by H2O-leaching. Key influencing factors on the lithium yield are the filter cake purification, the lithium separation method, the solid/liquid ratio, the pyrolysis temperature and atmosphere, and the setup of autoclave carbonation, which can be performed in an H2O-environment or in a dry autoclave environment. The carbonation treatments in this study are reached by an autoclave reactor working with CO2 in a supercritical state. This enables selective leaching of lithium in H2O followed by a subsequent thermally induced precipitation as lithium carbonate. In this approach, treatment with supercritical CO2 in an autoclave reactor leads to lithium yields of up to 79%.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3