Enhanced Cementation of Co2+ and Ni2+ from Sulfate and Chloride Solutions Using Aluminum as an Electron Donor and Conductive Particles as an Electron Pathway

Author:

Choi SanghyeonORCID,Jeon Sanghee,Park Ilhwan,Ito Mayumi,Hiroyoshi Naoki

Abstract

Cobalt and nickel have become important strategic resources because they are widely used for renewable energy technologies and rechargeable battery production. Cementation, an electrochemical deposition of noble metal ions using a less noble metal as an electron donor, is an important option to recover Co and Ni from dilute aqueous solutions of these metal ions. In this study, cementation experiments for recovering Co2+ and Ni2+ from sulfate and chloride solutions (pH = 4) were conducted at 298 K using Al powder as electron donor, and the effects of additives such as activated carbon (AC), TiO2, and SiO2 powders on the cementation efficiency were investigated. Without additives, cementation efficiencies of Co2+ and Ni2+ were almost zero in both sulfate and chloride solutions, mainly because of the presence of an aluminum oxide layer (Al2O3) on an Al surface, which inhibits electron transfer from Al to the metal ions. Addition of nonconductor (SiO2) did not affect the cementation efficiencies of Co2+ and Ni2+ using Al as electron donor, while addition of (semi)conductors such as AC or TiO2 enhanced the cementation efficiencies significantly. The results of surface analysis (Auger electron spectroscopy) for the cementation products when using TiO2/Al mixture showed that Co and Ni were deposited on TiO2 particles attached on the Al surface. This result suggests that conductors such as TiO2 act as an electron pathway from Al to Co2+ and Ni2+, even when an Al oxide layer covered on an Al surface.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3