The Weld Microstructure and Mechanical Properties of the Alloy 52 and Its Variants with Applied Electromagnetic Stirring during Welding

Author:

Wu Tai-Jung,Jeng Sheng-LongORCID,Huang Junn-Yuan

Abstract

This study investigated the impact of electromagnetic stirring (EMS) on nickel-base alloy welds prepared with the gas tungsten arc welding process. Alloy 52 and its variants, Alloy 52M and Alloy 52MSS, were carefully evaluated with their weld microstructure and mechanical properties. The results showed that the welds exhibited a typical microstructure of dendrites, and that the dendrites could be refined by electromagnetic stirring. Meanwhile, with an application of EMS, the precipitates became smaller and more evenly distributed in the inter-dendritic areas. Ti(N,C)s, Nb/(Nb,Si)Cs, and large-scale Laves phase with (Nb,Mo,Ti)Cs were the precipitates present in the Alloy 52, Alloy 52M, and Alloy 52MSS welds, respectively. With the refined microstructure, both Alloy 52 and Alloy 52M welds were observed to have an increase in their tensile strength, with a decrease in their elongations. Comparatively, for the Alloy 52MSS weld, the tensile strength was enhanced along with a slight increase in elongation. Deep and dense dimples were a dominant feature of low-Nb-additions welds, and dendrite-like features were found prevalent among the Alloy 52MSS welds. With EMS, the dimples of Alloy 52 welds and the dendrite-like features of Alloy 52MSS welds became finer, while the dimples of Alloy 52M welds grew coarser.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference28 articles.

1. U.S. Plant Experience with Alloy 600 Cracking and Boric Acid Corrosion of Light-Water Reactor Pressure Vessel Materials;Grimmel,2005

2. A new welding material for improved resistance to ductility dip cracking;Kiser,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3